
Bieżący numer
Archiwum
Artykuły zaakceptowane
O czasopiśmie
Rada naukowa
Bazy indeksacyjne
Prenumerata
Kontakt
Zasady publikacji prac
Standardy etyczne i procedury
Panel Redakcyjny
Zgłaszanie i recenzowanie prac online
|
1/2025
vol. 29 streszczenie artykułu:
Artykuł przeglądowy
Movement analysis-based injury prediction model among athletes – a review
Deepak Kumar Pradhan
1
Physiotherapy Review, 2025, 29(1), 5-12
Data publikacji online: 2025/03/26
Pełna treść artykułu
Pobierz cytowanie
ENW EndNote
BIB JabRef, Mendeley
RIS Papers, Reference Manager, RefWorks, Zotero
AMA
APA
Chicago
Harvard
MLA
Vancouver
Background Movement analysis is a multifaceted field that encompasses various methodologies for studying human motion and behavior across diverse contexts, particularly in sports and rehabilitation. Aims This review explores the integration of movement screening tools in predicting musculoskeletal injuries. Material and methods The review highlighted the importance of simulation tools, biomechanical analysis, and the significance of machine learning techniques in predicting injuries. The review explored key parameters such as motor control, strength deficits, and movement patterns, the review underscores the potential of predictive models to enhance athlete safety through targeted injury prevention strategies. Results Despite advancements, challenges remain in the accuracy of injury predictions due to inconsistencies in injury classification and variability among athletes. Conclusions The review advocates for the development of more refined, sport-specific models that incorporate real-time data analysis and wearable technology, ultimately aiming to bridge the gap in current predictive capabilities and improve athlete health outcomes. |