en ENGLISH
eISSN: 2719-9665
ISSN: 2719-5139
Physiotherapy Review
Bieżący numer Archiwum Artykuły zaakceptowane O czasopiśmie Rada naukowa Bazy indeksacyjne Prenumerata Kontakt Zasady publikacji prac Standardy etyczne i procedury
Panel Redakcyjny
Zgłaszanie i recenzowanie prac online
1/2025
vol. 29
 
Poleć ten artykuł:
Udostępnij:
Artykuł przeglądowy

Movement analysis-based injury prediction model among athletes – a review

Deepak Kumar Pradhan
1

  1. Kinesiology & Movement science, Abhinav Bindra Sports Medicine and Research Institute, Odisha, India
Physiotherapy Review, 2025, 29(1), 5-12
Data publikacji online: 2025/03/26
Plik artykułu:
- art1_1_2025.pdf  [0.21 MB]
Pobierz cytowanie
 
Metryki PlumX:
 
1. Parziale A, Senatore R, Cilia ND. Movement analy- sis for health and biometrics. Appl Sci. 2023; 13 (11): 6683.
2. Quinn L, et al. A framework for movement analysis of tasks: Recommendations from the Academy of Neurologic Physical Therapy’s Movement System Task Force. Phys Ther. 2021; 101 (9).
3. Bunn PDS, Silva EB. Dynamic movement assess- ment and functional movement screening for inju- ry prediction: A systematic review. Fisioter Pesqui. 2018; 25: 352-361.
4. Bulat M, Can NK, Arslan YZ, Herzog W. Musculo- skeletal simulation tools for understanding mech- anisms of lower-limb sports injuries. Curr Sports Med Rep. 2019; 18 (6): 210-216.
5. Teyhen DS, Shaffer SW, Goffar SL, Kiesel K, Butler RJ, Rhon DI, et al. Identification of risk factors pro- spectively associated with musculoskeletal injury in a warrior athlete population. Sports Health 2020; 12 (6): 564-572.
6. Henriquez M, Sumner J, Faherty M, Sell T, Bent B. Machine learning to predict lower extremity mus- culoskeletal injury risk in student athletes. Front Sports Act Living. 2020; 2: 576655.
7. Kakavas G, Malliaropoulos N, Pruna R, Maffulli N. Artificial intelligence: A tool for sports trauma pre- diction. Injury 2019.
8. Gogoi H, Rajpoot YS, Borah P. A prospective cohort study to predict running-related lower limb sports injuries using gait kinematic parameters. Teorìâ ta Metodika Fìzičnogo Vihovannâ 2021; 21 (1): 69-76.
9. Bullock GS, Mylott J, Hughes T, Nicholson KF, Ri- ley RD, Collins GS. Just how confident can we be in predicting sports injuries? A systematic review of the methodological conduct and performance of existing musculoskeletal injury prediction models in sport. Sports Med. 2022; 52 (10): 2469-2482.
10. Seow D, Graham I, Massey A. Prediction models for musculoskeletal injuries in professional sporting activities: A systematic review. Transl Sports Med. 2020; 3 (6): 505-517.
11. Cook C. Br J Sports Med. 2016; 50: 1356-1357.

© 2025 Termedia Sp. z o.o.
Developed by Bentus.